Smalltalk Programming
Aimbot!

Below is code that you can use to add a much desired ability in the shooter
game world — an aimbot! Most everyone who wants this only has the
ability to pay money to have it in their game. Almost no one codes their
very own aimbot. Are you up for the coding challenge? If you do it, you
will be one of the very few number of people who could ever say that they
have coded their very own gaming aimbot.

1. Type and save the code below.

EllipseMorph subclass: #Shot
instanceVariableNames: 'aimbotEnabled aimbotSteps'
classVariableNames: "
poolDictionaries: "
category: 'ShooterGame'

Shot>>initialize
super initialize.
self color: Color red.
self extent: 16 @ 16.
aimbotEnabled := false.
aimbotSteps := 800

Shot>>aimbotEnabled: aBoolean

aimbotEnabled := aBoolean

Shot>>closestTarget

| targetDistances |
targetDistances := Dictionary new.
owner enemies
do: [:enemy | targetDistances
at: (self position dist: enemy position)
put: enemy].
A targetDistances at: targetDistances keys min

Shot>>aimbotTowards: aTarget

| myPosition targetPosition myStepTime |
myPosition := self center.
targetPosition := aTarget center.
myStepTime := self stepTime.
aimbotSteps := aimbotSteps - myStepTime.
self center: ((targetPosition * myStepTime) + (myPosition * (aimbotSteps
- myStepTime))) // aimbotSteps

Shot>>aimbotTarget

owner enemies ifNotEmpty: [*self closestTarget]

Shot>>checkContact
self top < owner top
ifTrue: [~ self delete].
self bottom > owner bottom
ifTrue: [self delete].
self left < owner left
ifTrue: [self delete].
self right > owner right
ifTrue: [~ self delete].
owner enemies
do: [:enemy | (self bounds intersects: enemy bounds)
ifTrue: [self hitEnemy: enemy.
A self]]

Shot>>move
(aimbotEnabled and: owner enemies notEmpty)
ifTrue: [self aimbotTowards: self aimbotTarget]
ifFalse: [self position: self position - (0@5)].
self checkContact

Morph subclass: #ShooterGame
instanceVariableNames: 'ship score aimbotActivated'
classVariableNames: "
poolDictionaries: "
category: 'ShooterGame'

ShooterGame>>aimbotActivated

A aimbotActivated

ShooterGame>>initialize

super initialize.

self position: 100 @ 100.

self extent: 640 @ 480.

self color: Color black.

self setNameTo: 'Shooter Game'.
aimbotActivated := false.

self initializeStars.

self initializeShip.

self initializeScore.

self initializeEnemies

Ship>>shoot

| shot |

shot := Shot new aimbotEnabled: owner aimbotActivated.
shot position: self topCenter - shot bottomCenter.

owner addMorph: shot

ShooterGame>>toggleAimbot

aimbotActivated := aimbotActivated not.
(self submorphsSatisfying: [:morph | morph isMemberOf: Shot])
do: [:shot | shot aimbotEnabled: self aimbotActivated]

2. Note that the method submorphsSatisfying: works the way same
here as the two methods submorphs select: do together, which you used
elsewhere.

ShooterGame>>handleKeystroke: anEvent

| keyString |

keyString := anEvent keyString asLowercase.
keyString = 'r" ifTrue: [self initializeEnemies].
keyString = 'a' ifTrue: [self toggleAimbot].
ship keystroke: keyString

3. If you are “live coding” (making code changes while your game is still
running), you will also need to run this expression in an explore morph
window. Run the expression “aimbotActivated := false.” on ShooterGame
in your explore morph window. Remember to select ShooterGame before
running the expression. If you quit and start a new game this step will not
be necessary.

4. Now you are unstoppable! Is there anything else that might be cool to
have for your game?

5. Save and Quit your Smalltalk image.

	Smalltalk Programming
	Aimbot!

