
Smalltalk Programming
Lesson 23

In the last lesson you added the ability for ShooterGame to display a
functioning score. You noticed that even though the score works – it does
not update when enemies are destroyed. Today, you will make changes to
have the score add points when an enemy is destroyed.

1. In the shooter game, what 2 objects would be responsible for adding a
score when an enemy is destroyed?

2. An easy first answer is the score object. The Score class keeps track of
the points, so it will most definitely need to be used.

3. For the second, you might have to remember which object handles the
destruction of the enemy. Do you remember which object sent a message
to the enemy to remove itself from the game?

4. You may have remembered that in Shot>>hitEnemy:, the enemy is
removed from the game by sending delete to the enemy instance. Look at
Shot>>hitEnemy: to see where you removed the enemy from the game.

5. The Score class is used to handle the points, but instances of Shot do not
have a way to communicate with the score instance that ShooterGame
initialized. However, this is not a problem. One way to solve this is to
create a method in ShooterGame that will allow your Shot instance to
communicate with the score instance. Type and save
ShooterGame>>points:.

points: anInteger

 score points: anInteger

6. The method name does not have to be points: and it could be named
anything appropriate. Since Score uses points: to add points to the
score, it would be less confusing to have ShooterGame use the same
method name.

7. Now that ShooterGame has a way for the shot to notify the score
instance of new points, type and save the following code change in your
Shot class.

hitEnemy: enemy
 owner points: 100.
 self delete.
 enemy delete

8. Do you remember what happened before you needed to add “^” to
“self delete” in Shot>>checkContact? What problem did this change fix?

9. If you remembered that a deleted morph no longer has an owner – great
job! In programming, you will often need to consider situations like this.
The reason “owner points: 100.” needs to be before “self delete” is because
the shot instance would no longer have an owner after it is deleted. The
shot instance would no longer be a part of the game.

10. Test your score by adding points to your score display. Did it work?

11. What else needs to be done for your shooter game?

12. Save and Quit your Smalltalk image.

	Smalltalk Programming
	Lesson 23

