
Smalltalk Programming
Lesson 20

In the last lesson you added the ability to check if a shot made contact with
an enemy. In this lesson you will make changes to destroy an enemy with
a shot from your ship.

1. Remember from the last lesson that there were 4 steps the code needed
in order to shoot and destroy an enemy. One, the ability to find an enemy.
Two, to know if the shot hits an enemy. Three, to remove the shot when it
hits an enemy. Four, to remove the destroyed enemy from the game
screen. You will code this last step with the following changes.

2. Notice that the last two steps handle what to do once the enemy is hit.
You already have one of these steps, step 3, in the Shot>>checkContact
method. You are about to add another step, step 4. Since both steps handle
the same action – what to do when an enemy is hit – you should create a
method for this action.

3. For this change, you will once again be refactoring. Start by selecting the
highlighted code below in the Shot>>checkContact method. Right click
your mouse and you will see a menu similar to Figure 1. Select “refactor
source” and then “extract method”. You will then receive a popup box, like
Figure 2 below, asking for the method name to create. Enter hitEnemy:
enemy for the name and then press enter, or select “Accept”.

checkContact
 self top < owner top
 ifTrue: [^self delete].
 owner enemies
 do: [:enemy | (self bounds intersects: enemy bounds)
 ifTrue: [self delete]]

4. Look at the code changes that the refactoring made to your
Shot>>checkContact and Shot>>hitEnemy: methods. Can you figure out
what each line of the new code is doing? You can test the refactoring,
however, you will not notice any changes. The code still works the same.
Remember, refactoring changes the way a program is written to make it
cleaner and easier to understand, without changing how it works or what
it does.

Figure 1: Selecting refactor source -> extract
method

Figure 2: Entering name for new
method

5. Now it is time to take care of the enemy that has been taunting you!
Make the following code changes to make this happen.

hitEnemy: enemy
 self delete.
 enemy delete

6. Test out the code changes. What do you notice from the changes that
you made?

7. There is now no enemy taunting you. But, surely you want to shoot
more! How might you get another enemy on your game screen without
restarting your game?

8. A simple way for now will be to add the following code change to
ShooterGame>>handleKeystroke: so that you can easily create more
enemies on your game screen. A better solution would be to add code to
do this automatically, which you will do in a later lesson.

handleKeystroke: anEvent

 | keyString |
 keyString := anEvent keyString asLowercase.
 keyString = 'r' ifTrue: [self initializeEnemies].
 ship keystroke: keyString

9. Test out the code change. What do you notice from the change that you
made?

10. You might have noticed that you can now create a lot of enemies, and
when a shot hits multiple enemies at the same time, one shot can take out
more than one enemy. However, one shot should only take out one enemy.

11. Make this final change to Shot>>checkContact. This change will ensure
that only one enemy instance is removed per shot. The change uses a

method return so that the method stops executing once a shot has
destroyed an enemy. Otherwise, the method will continue removing other
enemies that were also hit by the same shot.

checkContact
 self top < owner top
 ifTrue: [^ self delete].
 owner enemies
 do: [:enemy | (self bounds intersects: enemy bounds)
 ifTrue: [self hitEnemy: enemy.
 ^ self]]

12. What else needs to be done for your shooter game?

13. Save and Quit your Smalltalk image.

	Smalltalk Programming
	Lesson 20

