
Smalltalk Programming
Lesson 19

In the last lesson you added the ability for enemies to move left and right.
You also enabled stepping for your enemy morph so that it is now moving
on its own. In this lesson you will make changes to check for contact with
an enemy. The code to check for contact with an enemy is important
because it lets the shot know when it hits an enemy. An enemy cannot be
destroyed if your shot cannot find it or know that it hit the enemy.

1. There are 4 steps the code needs in order to shoot and destroy an
enemy. What might those 4 steps be?

2. The first would be the ability to find the enemy. The second would be to
know if the shot hits an enemy. The third would be to remove the shot
when it hits an enemy. The fourth would be to remove the destroyed
enemy from the game screen.

3. First, you will need create a method to find enemies that exist on the
game screen. Which existing class might work best for keeping track of
enemies on the game screen?

4. The ShooterGame class would work best. It instantiates (creates) the
enemy instances, so it works well. Create the method
ShooterGame>>enemies using the code below.

enemies

 ^self submorphs select: [:morph | morph isMemberOf: Enemy]

5. Look at the line of code. Can you figure out what it is doing?

6. Second will be to determine if the shot hits an enemy. How will your
shot know when it hits an enemy? Which class might work best for having
a method to check this?

7. The Shot class works best for this. The Shot>>move method moves the
shot. Each time the shot moves, a check should be made to see if the shot
contacts an enemy.

8. Look at your Shot>>move method. Notice that in addition to moving the
shot, the method also checks whether the shot moves off the game screen.
This check would be better placed in its own method, since the move
method should only be concerned with moving the shot, not checking if it
contacts anything. The new method could also check if the shot comes into
contact with an enemy.

9. To make these code changes, you will learn another powerful tool in
Squeak/Smalltalk – refactoring. Refactoring means changing the way a
program is written to make it cleaner and easier to understand, without
changing how it works or what it does.

10. Start by selecting the highlighted code below in the Shot>>move
method. Right click your mouse and you will see a menu similar to Figure
1. Select “refactor source” and then “extract method”. You will then
receive a popup box, like Figure 2 below, asking for the method name to
create. Enter checkContact for the name and then press enter, or select
“Accept”.

move

 self position: (self position) - (0@5).
 self top < owner top ifTrue: [self delete]

11. Look at the code changes that the refactoring made to your
Shot>>move and Shot>>checkContact methods. This was a simple change,
however refactoring can handle complex changes, making them seem
very easy.

12. The code changes in Shot>>checkContact below will provide the second
and third steps needed in order to destroy an enemy with a shot. Type and
save the changes below.

Figure 1: Selecting refactor source -> extract
method

Figure 2: Entering name for new
method

checkContact
 self top < owner top
 ifTrue: [self delete].
 owner enemies
 do: [:enemy | (self bounds intersects: enemy bounds)
 ifTrue: [self delete]]

13. Look at each line of code. Can you figure out what each line of the new
code is doing?

14. Test the code changes. What do you notice from the changes that you
made?

15. You probably noticed a couple of things. First is that the enemy is still
invincible. The second is that one or more debuggers were triggered.

16. The enemy is invincible because the code to remove it has not been
added yet. This code will be added in the next lesson.

17. You will not use the debugger to determine the reason for the error
this time. The debugger was triggered because the Shot instance was
deleted as a submorph from your ShooterGame instance with “self delete”.
Once the Shot instance was deleted it was no longer a submorph of the
ShooterGame instance (meaning it was no longer part of the game).
Because it was deleted, the shot no longer had an “owner”. The code
triggers the debugger when evaluating “owner enemies” because the shot
does not have an owner anymore. You can close the debugger(s).

18. The purpose of raising the error was to teach a couple of things. First, it
teaches that objects can change during execution within a method. It is
necessary to keep track of changes like this. Second, it teaches about the ^
character, which is called a method return in Smalltalk. The ^ character is
used to return a value. When ^ is used, a value is purposely returned so
that it can be used (although it does not always have to be used). Another
effect of using the ^ is that it stops further execution in a method since the

method return immediately returns its value. The ^ allows the method to
exit without having to run the remaining code.

19. Make use of this method return feature in Shot>>checkContact. Make
the following change and then test it.

checkContact
 self top < owner top
 ifTrue: [^self delete].
 owner enemies
 do: [:enemy | (self bounds intersects: enemy bounds)
 ifTrue: [self delete]]

20. The enemy is still invincible and it is still taunting you for not being
able to defeat it! The changes that you will make in the next lesson will fix
this.

21. Save and Quit your Smalltalk image.

	Smalltalk Programming
	Lesson 19

